Overview of the sea quark polarization measurements of PHENIX at RHIC

Rusty Towell
Abilene Christian University

on behalf of the PHENIX Collaboration

<u>Nucleons</u>

- Fundamental building blocks.
- Comes in 2 charges.
- Similar masses.

Internal Structure of the Proton

- The proton is a complex and composite structure.
- Internal structure includes quarks and gluons.
- Total spin is ½ ħ.
- Spin is not simply the sum of the valence quark spins.

Outline

- Measurements that probe the spin structure of the proton.
- Measurements made by PHENIX.
- Future measurements PHENIX will make.

 Note: Limited to sea quark contribution to the spin structure only.

Spin Measurements

- 1. Polarized inclusive DIS measures:
 - Combination of valence and sea quark helicity distributions
 - Gluon helicity distributions
- 2. Polarized semi-inclusive DIS measures:
 - Individual flavored helicity distributions
 - But depend on fragmentation functions
- Longitudinally polarized high energy proton collisions measures:
 - Individual flavored helicity distributions
 - Gluon helicity distributions
 - Free from uncertainties in fragmentation functions
 - High energy collisions mean that higher order QCD corrections can be calculated reliably.

Single Spin Asymmetries (A_L)

- W-Boson SSA (A^{W}_{L}) probes sea and valence quark spin $(u+\bar{d} \rightarrow W^{+})$.
- W's couple only left-handed quarks with right-handed anti-quarks.
- Example at LO ignoring other quark contributions:

Bunce et al., Ann.Rev.Nucl.Part.Sci.50:525-575,2000

Relativistic Heavy Ion Collider (RHIC) also collides polarized protons

University of São Paulo, São Paulo, Brazil Academia Sinica, Taipei 11529, China

China Institute of Atomic Energy (CIAE), Beijing, P. R. China

ort 1999

Laboratoire de Physique Corpusculaire (LPC), Universite de Clermont–Ferrand, 63170

Aubiere, Clermont-Ferrand, France

Dapnia, CEA Saclay, Bat. 703, F-91191, Gif-sur-Yvette, France

IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France

LPNHE-Palaiseau, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128,

Palaiseau, France

SUBATECH, Ecole des Mines at Nantes, F–44307 Nantes, France

University of Muenster, Muenster, Germany

Banaras Hindu University,Banaras, India

Bhabha Atomic Research Centre (BARC),Bombay, India

Weizmann Institute, Rehovot, Israel

Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan

Hiroshima University, Higashi–Hiroshima 739, Japan

KEK, Institute for High Energy Physics, Tsukuba, Japan

Kyoto University, Kyoto, Japan

Nagasaki Institute of Applied Science, Nagasaki–shi, Nagasaki, Japan

RIKEN, Institute for Physical and Chemical Research, Hirosawa, Wako, Japan

University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Waseda University, Tokyo, Japan

Cyclotron Application Laboratory, KAERI, Seoul, South Korea Kangnung National University, Kangnung 210–702, South Korea

Korea University, Seoul, 1361701, Korea

Myong Ji University, Yongin City 449-728, Korea

System Electronics Laboratory, Seoul National University, Seoul, South Korea Yonsei University, Seoul 120–749, KOREA

Institute of High Energy Physics (IHEP-Protvino or Serpukhov), Protovino, Russia Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia Kurchatov Institute, Moscow, Russia

PNPI: St. Petersburg Nuclear Physics Institute, Gatchina, Leningrad, Russia Lund University, Lund, Sweden

Abilene Christian University, Abilene, Texas, USA

Brookhaven National Laboratory (BNL), Upton, NY 11973

University of California – Riverside (UCR), Riverside, CA 92521, USA

Columbia University, Nevis Laboratories, Irvington, NY 10533, USA

Florida State University (FSU), Tallahassee, FL 32306, USA

Georgia State University (GSU), Atlanta, GA, 30303, USA

Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA

LANL: Los Alamos National Laboratory, Los Alamos, NM 87545, USA

LLNL: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

University of New Mexico, Albuquerque, New Mexico, USA

New Mexico State University, Las Cruces, New Mexico, USA

Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA

Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794-, USA

Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA

University of Tennessee (UT), Knoxville, TN 37996, USA Vanderbilt University, Nashville, TN 37235, USA

The PHENIX Detector

First W[±] Measurement at RHIC

- RHIC provided enough polarized p+p collisions at $\sqrt{s} = 500$ GeV in 2009 for a first measurement.
- Yielded first W-Boson measurement for PHENIX.

Phys. Rev. Lett. 106, 062001 (2011)

- Integrated luminosity of 8.6 pb⁻¹.
- Average polarization was 39%.
- Preliminary results presented at DIS 2010.
- Limited to electron final state.

PHENIX: Electron Final State

Central spectrometer arms

- $-|\eta|<0.35$
- $-|\Delta \phi| < \pi/2$
- Tracking
 - Drift Chamber
 - Pad Chamber
- EM calorimeter (Δφ x Δη ≈ 0.01 x 0.01)
- trigger fully efficient above ≈12 GeV

Event selection

- ±30 cm vertex cut
- High energy EM Calorimeter clusters matched to charged track
- Loose timing cut eliminates cosmic rays
- Momentum resolution allows only loose E/p cut
- Charge sign discrimination by measuring bend angle in drift chamber

Longitudinal spin asymmetry A_L

Parity violating longitudinal single spin asymmetry defined by

$$\epsilon_L = \frac{N^+ - R \cdot N^-}{N^+ + R \cdot N^-}$$

$$A_L = \frac{\epsilon_L \cdot D}{P}$$

- N⁺ = right handed production of W
- N⁻ = left handed production of W
- P = Polarization
- R = relative luminosities of the helicity states
- D = dilution by background and Z⁰

positron & electron counts

- Isolation cut removes jets
- Background is reduced by about a factor of 4.
- About 20%
 of the signal
 is lost.

Longitudinal Single-Spin Asymmetries

- Error bars represent 68% CL.
- Theoretical curves are calculated at NLO with different PDFs.

15

The Future

- More data
- Improved polarization
- Muon channel final state:
 - Need to at least increase rejection factor of muon arms trigger by a factor of ~100.
 - We need a trigger that is sensitive to the muon momentum.
 - Need to introduce timing information in the muon trigger to reject beam backgrounds.

Inclusive μ Production, 500 GeV/c

The PHENIX Detector

Forward Trigger Upgrade

1. Resistive Plate Chambers

- Provides rapid tracking information to the trigger.
- Timing information eliminates background from beam.

2. MuTr FEE upgrade

Adds momentum information to the trigger.

3. Absorber material

Helps to eliminate fake high p_T background

Scope of the PHENIX RPC Trigger Upgrade and Schedule

2010DIS April 12, 2011

RPC3 North and South Installed

Forward Trigger Up grade

PHENIX Muon Trigger Performance

muTracker Trigger Efficiencies

RPC-Inner Ring Efficiency

Problems Solved:

RPC-gas -> mixture & pressure differentials timing -> RPCs now timed in correctly

Taking data with muTr part of trigger in run 2011, use RPC offline for background rejection

track momentum (GeV/c)

Summary

- W-boson measurements will improve our understanding of the quark/antiquark spin contribution to the proton.
- PHENIX's W-boson program is underway.
 - First electron results have been published.
 - A suite of upgrades is currently being commissioned that will yield the first muon result.

DIS April 12,

Backup Slides

PHENIX Muon Trigger Upgrade Project

MuID trigger

selecting muon momentum > 2GeV/c

MuTR FEE upgrade

fast selection of high-momentum-tracks

RPC

provide timing information and rough position information

RHIC Luminosity 2009

- Longitudinally polarized collisions at PHENIX and STAR
- Up to 111 bunch crossings with varied spin orientations for control of systematic errors
- Luminosity typically ≈4x10³¹ cm⁻²sec⁻¹

W. Fischer

2009 Polarization measurements

- Measured with two polarimeters
 - CNI polarimeter measurements available during run
 - H jet polarimeter provides absolute polarization
 - Measured residual polarization in real time after rotation at PHENIX

Polarization measured by CNI polarimeters fill-by-fill

PHENIX Detectors

π^0 , η , γ detection

- Electromagnetic Calorimeter (PbSc/PbGl):
 - High pT photon trigger
 - Acceptance: $|\eta| < 0.35$, $\phi = 2 \times \pi/2$
 - High granularity (~10*10 mrad²)

$\pi^{+}/\pi^{-}, e, J/y \rightarrow e + e$

- Drift Chamber (DC)
- Ring Imaging Cherenkov Detector (RICH)

Relative Luminosity

- Beam Beam Counter (BBC)
 - Acceptance: $3.0 < \eta < 3.9$
- Zero Degree Calorimeter (ZDC)
 - Acceptance: ±2 mrad about beam axis

Focus: High granularity and high bandwidth Compromise: Acceptance

Proton Spin

- Proton is a complex and composite structure of quarks and gluons with total spin of ½ ħ
- Total spin of a composite structure is sum of individual components (spin and orbital angular momenta of quarks and gluons)
- Contribution of spin of all gluons in proton to the total spin of proton is ΔG (difference between same and opposite helicity gluons in polarized proton)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(Q^2) + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$$

$$\Delta G = \int_0^1 dx \Delta g = \int_0^1 dx [g_+(x, \mu^2) - g_-(x, \mu^2)]$$

RHIC: Polarized p-p Collider / History

Proton bunches filled with alternating spin combinations

- Four different spin patterns are use
- Siberian snakes rotate spin vector seperturbations cancel on subsequenstable)
- Spin Rotators allow polarization to k longitudinal or horizontal as require
- Absolute (H-jet) and relative (pC pc measurements

	Year	√s [GeV]	L [pb ⁻¹] (recorded)	Pol. [%]	FOM (P ⁴ L)
e	2003	200	0.35	27	0.0019
S					
n	2004	200	0.12	40	0.0031
	2005	200	3.4	49	0.20
	2006	200	7.5	57	0.79
֝֞֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝	2006	62.4	80.0	48	0.0042
Æ	2009	200	14	57	1.5
0	2009	500	14	39	0.21